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Analytic Derivatives Enable Robust 
Simulation and Design Capabilities 

• We need analytic first & higher derivatives for predictive simulations 
– Computational design, optimization and parameter estimation 
– Stability analysis 
– Uncertainty quantification 
– Verification and validation 

• Analytic derivatives improve robustness and efficiency 
– Very hard to make finite differences accurate 

•  Infeasible to expect application developers to code analytic 
derivatives 

– Time consuming, error prone, and difficult to verify 
– Thousands of possible parameters in a large code 
– Developers must understand what derivatives are needed 

• Automatic differentiation solves these problems 
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What is Automatic Differentiation (AD)? 

•  Technique to compute analytic derivatives 
without hand-coding the derivative 
computation 

•  How does it work -- freshman calculus 
– Computations are composition of 

simple operations (+, *, sin(), etc…) 
with known derivatives 

– Derivatives computed line-by-line, 
combined via chain rule 

•  Derivatives accurate as original 
computation  

– No finite-difference truncation errors 

•  Provides analytic derivatives without the 
time and effort of hand-coding them 



•  Forward Mode: 
–  Propagate derivatives of intermediate variables w.r.t. independent variables forward 

–  Change of variables 

–  Complexity 

•  Reverse Mode:   
–  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards 

–  Change of variables 

–  Complexity 

AD Takes Two Basic Forms 



How is AD Implemented? 

• Source transformation 
– Preprocessor implements AD 
– Very efficient derivative code 
– Works well for FORTRAN, some C 
– Extremely difficult for C++ 
– OpenAD, ADIFOR, ADIC (Argonne National Lab & Rice University) 

• Operator overloading 
– All intrinsic operations/elementary operations overloaded for AD data types 
– Change data types in code from floats/doubles to AD types 

• C++ templates greatly help 
– Easy to incorporate into C++ codes 
– Slower than source transformation due to function call overhead 
– ADOL-C (TU-Desden), TFAD<> (expression templates) 

• Effective implementation requires appropriate tool and approach 



Sandia Physics Simulation Codes 
• Element-based 

– Finite element, finite volume, finite 
difference, network, etc… 

•  Large-scale 
– Billions of unknowns 

• Parallel 
– MPI-based SPMD 
– Distributed memory 

• C++ 
– Object oriented 
– Some coupling to legacy Fortran libraries 

• We need AD techniques that fit these 
requirements 

Fluids Combustion 

Structures 
Circuits 

Plasmas 

MEMS 



Sacado:  AD Tools for C++ Applications 

• Package in Trilinos 8.0 

•  Implements several modes of AD 
– Forward (Jacobians, Jacobian-vector products, …) 
– Reverse (Gradients, Jacobian-transpose-vector products, …) 
– Taylor (High-order univariate Taylor series) 

• AD via operator overloading and C++ templating 
– Expression templates for OO efficiency 
– Application code templating for easy incorporation 

• Designed for use in large-scale C++ codes 
– Apply AD at “element-level” 
– Manually integrate derivatives into parallel data structures and solvers 
– Sacado::FEApp example demonstrates approach 



Simple Sacado Example 



#include "Sacado.hpp"	

// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
  ScalarT r = c*std::log(b+1.)/std::sin(a);	
  return r;	
}	

int main(int argc, char **argv) {	
  double a = std::atan(1.0);                       // pi/4	
  double b = 2.0;	
  double c = 3.0;	

  int num_deriv = 2;                               // Number of independent variables	
  Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
  Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
  Sacado::Fad::DFad<double> cfad(c);               // Passive variable	

  // Compute function	
  double r = func(a, b, c);	

  // Compute function and derivative with AD	
  Sacado::Fad::DFad<double> rfad = func(afad, bfad, cfad);	

  // Extract value and derivatives	
  double r_ad = rfad.val();     // r	
  double drda_ad = rfad.dx(0);  // dr/da	
  double drdb_ad = rfad.dx(1);  // dr/db	

Simple Sacado Example 



•  Global residual computation (ignoring boundary computations): 

•  Time-step Jacobian computation: 

•  Parameter derivative computation: 

•  Hybrid symbolic/AD procedure 

Differentiating Element-Based  
Production Applications 



The Trilinos Project 

•  http://trilinos.sandia.gov  
• Algorithms and enabling technologies 
•  Large-scale scientific and engineering 

applications 
• Object oriented framework 
•  “String of Pearls” 
• Focus on packages 

– Over 30 packages in 8.0 release 
– Over 40 in development 



Trilinos Packages 
Objective Package(s) 

Discretizations 
Meshing & Spatial Discretizations phdMesh, Intrepid 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Core 

Linear algebra objects Epetra, Jpetra, Tpetra 

Abstract interfaces Thyra, Stratimikos, RTOp 

Load Balancing Zoltan, Isorropia 

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos 

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos, Triutils 

Solvers 

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi 

ILU-type preconditioners AztecOO, IFPACK 

Multilevel preconditioners ML, CLAPS 

Block preconditioners Meros 

Nonlinear system solvers NOX, LOCA 

Optimization (SAND) MOOCHO, Aristos 



Integrating AD with Trilinos Solver 
Capabilities 

NOX LOCA Rythmos 

Thyra::ModelEvaluator 

Application::ModelEvaluator 

Evaluate Jacobian 

Loop over elements	
  gather element solution	
  initialize element AD types	
  evaluate templated element residual	
  extract derivative values	
  sum into global derivative matrix	
end loop	

Nonlinear Solvers 

Abstract application interface 

Concrete application interface 

Method implementation 



Steady-state mass transfer equations: 

Scalability of This Approach 
Scalability of the element-level derivative computation 

Set of N hypothetical chemical species: 

DOF per element = 4*N 

Forward mode AD 
✓ Faster than FD 
✓ Better scalability in number of PDEs 
✓ Analytic Derivative 

Reverse mode AD 
✓ Scalable adjoint/gradient 



Si interstitial (I) (+2,+1,0,–1,–2) 

Vacancy (V) (+2,+1,0,–1,–2) 

VV (+1,0,–1,–2) 

BI (+,0,–) 

CI (+,0,-) 

VP (0,–) 

VB (+,0) 

VO (0,–) 

BIB (0,–) 

BIO (+,0) 

BIC 

Annihilation 

Annihilation 

Defect reactions 

QASPR  
Qualification of electronic devices in hostile environments 

PDE semiconductor 
device simulation 

Stockpile BJT 



Charon Drift-Diffusion Formulation  
with Defects 

Defect Continuity 

Include electron capture and hole capture by defect species 
and reactions between various defect species 

Electric potential 

Electron emission/
capture 

Current 
Conservation for e- 

and h+ 

Cross section 

Activation Energy 

Recombination/
generation source 

terms 



Forward Sensitivity Analysis with Rythmos 
• Discretized PDE system: 

•  Forward sensitivity problem 

• Rythmos time integration package 
–  Todd Coffey, Ross Bartlett (SNL) 
–  Implicit BDF time integration method 
–  Variable order, step size 
–  Staggered corrector forward sensitivity 

method (Barton) 



Sensitivity Analysis of a Pseudo-1D BJT 
•  9x0.1 micron pseudo-1D simulation 
•  1384x1 quad cells, linear finite elements + SUPG 
•  2 carriers + 1 potential + 36 defect species 
•  108,030 unknowns on 32 processors 
•  84 carrier-defect reactions 
•  126 parameters for sensitivity analysis 
•  AD Jacobian, parameter deriv’s 
•  Base current provides observation function 

Transient Base Current Radiation Pulse 



# Reaction Parameter Value 
14 activation energy 0.09 

16 cross-section 2.40E-14 

46 cross-section 1.50E-15 

Scaled Sensitivities Scaled Sensitivities 

Unscaled Sensitivities 

Transient Base Current Sensitivities 



Comparison to Black-Box Finite Differences 

•  Run-times: 
– Forward simulation:  105 min. 
– Direct sensitivities:  931 min. 
– Black-box, first-order FD:  ~13,000 min. 

•  Direct approach more efficient 
– 14x speed-up 

•  Direct approach more accurate 
– 1-2 correct digits w/FD 
– FD requires tighter tolerances to 

achieve higher accuracy 
•  Direct approach more robust 

– Accuracy solely dictated by time-
integration error 

1st-order Finite Difference Error 
1e-3 integration tolerance 

1e-5 integration tolerance 



Stage is Set for Model Calibration 



Leveraging Template Infrastructure 

• Application code templating allows easy incorporation of new AD 
data types 

– Second derivatives 
• Sacado::Fad::DFad< Sacado::Rad::DFad<double> > 

• Sacado::Rad::ADvar< Sacado::Rad::DFad<double> > 

– Taylor polynomials 
• Sacado::Tay::Taylor<double>	

– Polynomial uncertainty representations	



Uncertainty Quantification 

• Quantifying uncertainties critical for predictive simulation 
• Aleatory or irreducible uncertainty:  “inherent randomness” 

– Probability distribution representations 
– Monte Carlo sampling and its many variants (e.g., LHS) 
– Stochastic collocation 
– Polynomial chaos and generalized polynomial chaos 

• Epistemic or reducible uncertainty:  “lack of knowledge” 
– Set/interval representations 
– Interval arithmetic 
– Possibility/evidence theory 
– Probability boxes 

• Aleatory uncertainty for parametric uncertainty 



Stochastic Galerkin Methods 
(For parametric uncertainty) 

• Deterministic problem (possibly after spatial discretization): 

• Stochastic problem: 

• Galerkin approximation: 

• Most methods can be obtained by choice of approximating space 
and basis (Gunzberger & Webster) 

– Space of piecewise constant functions:  Monte Carlo 
– Space of complete polynomials of a given degree 

• Lagrange interpolation polynomial basis:  Stochastic collocation 
• Hermite polynomial basis:  Polynomial chaos 
• General orthogonal polynomial basis:  Generalized polynomial 
chaos 

• Choice of space/basis dictates structure of nonlinear problem 



SG Methods via AD 

• Galerkin residuals typically evaluated by quadrature 
• Galerkin method can also be viewed as a projection 
•  Idea: 

– Given computer code to evaluate deterministic F 
– Compute projection operation by operation in evaluation of F, in an 

AD-like manner 
– Need way to compute projections of each operation 

– Worked these out for orthogonal bases (e.g., polynomial chaos) 



Projections of Intermediate Operations 

• Addition/subtraction 

• Multiplication 

• Division 

• Transcendental 
– Taylor series 
– Differential equations 

•  Implemented in a new Trilinos package called Stokhos, wrapped 
by Sacado for AD 



AD Polynomial Chaos for a Simple Function 

• Univariate Hermite basis 
• Gaussian random variable 
• Degree 3, 5, 7 PC 

expansion computed by 
AD 



SG for Implicit Systems 

• Propagating polynomials forward through code provides stochastic 
residuals 

• For implicit systems, also need Jacobians 

• Solving implicit systems via Newton’s method requires vary large 
linear system solves 



Summary 
• Templating key to AD approach 

– Simple, fast Sacado AD tools 
– Apply at “element” level 
– Hooks for future program 

transformation 

• Vertical integration of Trilinos 
technologies provide remarkable 
capabilities 

– Efficient, accurate, robust 
sensitivities 

– Foundation for transient 
optimization 

– Potential for intrusive stochastic 
Galerkin methods 

– Requires all levels to be effective 


